
Practical approach to Infrastructure as Code - how

to effectively program your cloud

Tomasz Cholewa  

OSEC Forum 2017

whoami

Automation freak

DevOps Enthusiast

Cloud Infrastructure Architect (AWS)

Infrastructure as Code practitioner

Certificate collector

Expectations

Reality

Why do we need

IaC?

Scaling

Cloud & DevOps Money

Progress & Innovation

Definition

Infrastructure as code (IaC) is the

process of managing and provisioning

computer data centers through

machine-readable definition files,

rather than physical hardware

configuration or interactive

configuration tools.

CloudFormation = IaC

CloudFormation = IaC

CloudFormation < IaC

Rule 1

IaC is not about tools, but a

process

Change control

VERSION

GIT

Code management practices

 - Feature branches

 - Code review

 - Pull requests

 - Tagging

Source: https://github.com/abixen/abixen-platform

Repository content

Yaml,JSON,HCL

Scripts (shell,

python, ruby, …)

Misc

Dockerfile

Tests

Configuration

Artifacts

Versioning of external components

Python modules (including ansible) - requirements.txt

Ruby Gems - Gemfile

Custom wrappers for external tools (example  

https://github.com/cloudowski/terraform-wrapper)

Docker containers (never use “latest” tag)

requirements.txt

Gemfile

Rule 2

You can’t do IaC without

versioning

Consistency

It works for me  

=  

it works on my environment

Consistency

Greater autonomy - self-serviced environments

AWS Service Catalog

Docker, Vagrant based environments

AWS OpsWorks, Elastic Beanstalk

Immutable

Infrastructure

AWS re:Invent 2016: Life Without SSH: Immutable

Infrastructure in Production (SAC318)

Immutable

Infrastructure

That’s me :-)

AWS re:Invent 2016: Life Without SSH: Immutable

Infrastructure in Production (SAC318)

Configuration management

Configuration per environment

Ansible inventories - one per environment

Dynamic inventories per “Env” AWS tag

 - ec2.py

 - Consul

Dedicated repository with proper policy

Secret and sensible data management

Ansible Vault

HashiCorp Vault

NEVER, EVER in plaintext in repo!

No credentials

 - IAM Instance Profiles

 - IAM Roles for ECS Task

Recipe for new environment

Tools + Code + Config = Environment

CloudFormation

Terraform

Ansible

CFN Templates

Terraform HCL

Playbooks, Roles

Variables

Secret/Sensitive Data

Extra code

Rule 3

You can’t name it IaC if you

can’t create new env quickly

Antifragile Infrastructure

Apparently S3 is not Antifragile (yet?)

Continuous Improvement

Multicloud requires IaC

Rule 4

You can’t do IaC without

continuous improvement of

the process

Provisioning

Provisioning layers

CloudFormation Templates

Terraform Modules

Provisioning layers

CloudFormation Templates

Terraform Modules

Provisioning layers

Ansible

Tagging

Tagging as a part of deployment process

Recommended IaC related tags:

 - Env - environment name (consistent with naming in configuration part of the code)

 - CodeVersion - version string of the code which provisioned resource

 - Role - for EC2 instances it may be used for startup provisioning (e.g. Ansible)

Ansible provisioning

1. Launch instance

2. Exec UserData code

1. Install ansible (if AMI doesn’t contain it)

2. Fetch ansible code (version aligned with CodeVersion tag)

3. Apply role(s) based on Role EC2 tag value

Provisioning layers

(Software) Continuous Deployment Processes

Testing

Pyramid of tests

Low level
Check definition files (syntax, style)

Linters

• Pep8

• ansible-lint

• CloudFormation - validate-template

command

Configuration checks

Launched automatically by build server

(on PR)

Medium level tests

Test-kitchen (http://kitchen.ci)

Provision test resources (locally)

Regression testing

Compliance testing

Medium level tests

Test-kitchen verifiers

• ServerSpec

• InSpec

High-level tests

Launched on dedicated environment and/or live environments

Security related (e.g. SSL, ingress/egress traffic, CVE vulnerabilities)

Performance & load testing (e.g. AutoScaling responsiveness)

“Temporary”/non-compliant resources discovery

Test like a Pro!

Simian Army

 - Chaos Monkey

 - Chaos Gorilla

 - Chaos Kong

 - Conformity Monkey

 - Doctor Monkey

 - Latency Monkey

 - Janitor Monkey

 - Security Monkey

Rule 5

You can’t do IaC without

proper testing

Continuous Deployment

Pipeline

Overview

Steps

1 - send code to git repository

2 - initialize/start pipeline

3 - run pipeline stages

4 - publish artifacts

5 - deploy code on particular environment

6 - provision environment layers

Pipeline

Commit stage

Low-level tests

Lauched automatically on new Pull Requests

Test stage

Medium-level tests

Artifacts prepare and publish

Deployment

Provision resources for environment

Multiple hierarchies

- Serial

- Parallel

Dedicated test environment for long-running

tests

- performance

- compliance/security

Environment isolation levels (VPC, AWS

account)

Pipeline

Pipeline implementation on Jenkins

AWS CodePipeline + CloudFormation

Implementation tips

Automation

Automation

What if I’m not a

programmer?

Become YAML, JSON

“programmer”

Shell scripts are back!

Start learning to code -

there’s no way back!

Infrastructure as Code rules summary

1 - Focus on process, not tools

2 - Version all the things

3 - Prepare your code to create repeatable and consistent environments

4 - Make your infrastructure Antifragile by learning and continuously improving

5 - Don’t forget about proper testing

Thank You!

Contact me:

 Email: librevo@librevo.pl

 LinkedIn: https://www.linkedin.com/in/tomaszcholewa

 Blog: http://cloudowski.com

